The Chromatin-Remodeling Factor FACT Contributes to Centromeric Heterochromatin Independently of RNAi
نویسندگان
چکیده
Centromeres exert vital cellular functions in mitosis and meiosis. A specialized histone and other chromatin-bound factors nucleate a dynamic protein assembly that is required for the proper segregation of sister chromatids. In several organisms, including the fission yeast, Schizosaccharomyces pombe, the RNAi pathway contributes to the formation of silent chromatin in pericentromeric regions. Little is known about how chromatin-remodeling factors contribute to heterochromatic integrity and centromere function. Here we show that the histone chaperone and remodeling complex FACT is required for centromeric-heterochromatin integrity and accurate chromosome segregation. We show that Spt16 and Pob3 are two subunits of the S. pombe FACT complex. Surprisingly, yeast strains deleted for pob3+ are viable and alleviate gene silencing at centromeric repeats and at the silent mating-type locus. Importantly, like heterochromatin and RNAi pathway mutants, Pob3 null strains exhibit lagging chromosomes on anaphase spindles. Whereas the processing of centromeric RNA transcripts into siRNAs is maintained in Pob3 mutants, Swi6-association with the centromere is reduced. Our studies provide the first experimental evidence for a role of the RNA polymerase II cofactor FACT in heterochromatin integrity and in centromere function.
منابع مشابه
Stc1: A Critical Link between RNAi and Chromatin Modification Required for Heterochromatin Integrity
In fission yeast, RNAi directs heterochromatin formation at centromeres, telomeres, and the mating type locus. Noncoding RNAs transcribed from repeat elements generate siRNAs that are incorporated into the Argonaute-containing RITS complex and direct it to nascent homologous transcripts. This leads to recruitment of the CLRC complex, including the histone methyltransferase Clr4, promoting H3K9 ...
متن کاملHeterochromatin protein 1 homologue Swi6 acts in concert with Ers1 to regulate RNAi-directed heterochromatin assembly.
In fission yeast, the RNAi pathway is required for centromeric heterochromatin assembly. siRNAs derived from centromeric transcripts are incorporated into the RNA-induced transcriptional silencing (RITS) complex and direct it to nascent homologous transcripts. The RNA-induced transcriptional silencing-bound nascent transcripts further recruit the RNA-directed RNA polymerase complex (RDRC) to pr...
متن کاملInvestigating the Role of RNA Polymerase II in RNAi-dependent Heterochromatin Assembly at Centromeric Repeats
In Schizosaccharomyces pombe, a fission yeast, large domains of heterochromatin are found at telomeres, silent mating-type loci, and centromeric repeat regions of DNA (Bühler and Moazed, 2007). Much of the work done with S. pombe has shown that the assembly of heterochromatin around centromeric repeats depends on the coordination of two pathways: RNAi and histone modification. Current models su...
متن کاملThe budding yeast silencing protein Sir1 is a functional component of centromeric chromatin.
In fission yeast and multicellular organisms, centromere-proximal regions of chromosomes are heterochromatic, containing proteins that silence gene expression. In contrast, the relationship between heterochromatin proteins and kinetochore function in the budding yeast Saccharomyces cerevisiae remains largely unexplored. Here we report that the yeast heterochromatin protein Sir1 is a component o...
متن کاملA conserved ncRNA-binding protein recruits silencing factors to heterochromatin through an RNAi-independent mechanism.
Long noncoding RNAs (lncRNAs) can trigger repressive chromatin, but how they recruit silencing factors remains unclear. In Schizosaccharomyces pombe, heterochromatin assembly on transcribed noncoding pericentromeric repeats requires both RNAi and RNAi-independent mechanisms. In Saccharomyces cerevisiae, which lacks a repressive chromatin mark (H3K9me [methylated Lys9 on histone H3]), unstable n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 17 شماره
صفحات -
تاریخ انتشار 2007